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PATTERN SEARCH METHODS FOR LINEARLY CONSTRAINED MINIMIZATION

ROBERT MICHAEL LEWIS ∗ AND VIRGINIA TORCZON †

Abstract. We extend pattern search methods to linearly constrained minimization. We develop a
general class of feasible point pattern search algorithms and prove global convergence to a Karush-Kuhn-
Tucker point. As in the case of unconstrained minimization, pattern search methods for linearly constrained
problems accomplish this without explicit recourse to the gradient or the directional derivative. Key to the
analysis of the algorithms is the way in which the local search patterns conform to the geometry of the
boundary of the feasible region.
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1. Introduction. This paper continues the line of development in [5, 6, 11] and extends pattern search
algorithms to optimization problems with linear constraints:

minimize f(x)
subject to ` ≤ Ax ≤ u,

(1.1)

where f : IRn → IR, x ∈ IRn, A ∈ Qm×n, `, u ∈ IRm, and ` ≤ u. We allow the possibility that some of the
variables are unbounded either above or below by permitting `i, ui = ±∞, i ∈ {1, · · · ,m}. We also admit
equality constraints by allowing `i = ui.

We can guarantee that if the objective f is continuously differentiable, then a subsequence of the iterates
produced by a pattern search method for linearly constrained minimization converges to a Karush-Kuhn-
Tucker point of problem (1.1). As in the case of unconstrained minimization, pattern search methods for
linearly constrained problems accomplish this without explicit recourse to the gradient or the directional
derivative. We also do not attempt to estimate Lagrange multipliers.

As with pattern search methods for bound constrained minimization [5], the pattern of points over which
we must search in the worst case will, when we are close to the boundary, conform to the geometry of the
boundary. The general idea, which also applies to unconstrained minimization [6], is that the pattern must
contain search directions that comprise a set of generators for the cone of feasible directions. We must be a
bit more careful than this; we must also take into account the constraints that are almost binding in order
to be able to take sufficiently long steps. In the bound constrained case this turns out to be simple to ensure
(though in §8.3 we will sharpen the results in [5]). In the case of general linear constraints the situation is
more complicated.
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Practically, we imagine pattern search methods being most applicable in the case where there are rela-
tively few linear constraints besides simple bounds on the variables. This is true for the applications that
motivated our investigation. Our analysis does not assume non-degeneracy, but the class of algorithms we
propose will be most practical when the problem is nondegenerate.

2. Background. After we presented this work at the 16th International Symposium on Mathematical
Programming in Lausanne, Robert Mifflin brought to our attention the work of Jerrold May in [7], which
extended the derivative-free algorithm for unconstrained minimization in [8] to linearly constrained problems.
May proves both global convergence and superlinear local convergence for his method. To the best of
our knowledge, this is the only other provably convergent derivative-free method for linearly constrained
minimization.

Both May’s approach and the methods described here use only values of the objective at feasible points
to conduct their searches. Moreover, the idea of using as search directions the generators of cones that
are polar to cones generated by the normals of faces near the current iterate appears already in [7]. As
our analysis will indicate, this is unavoidable if one wishes to be assured of capturing any possible feasible
descent in f using only values of f at feasible points (as would be the case in a derivative-free feasible point
minimization method).

On the other hand, there are significant differences between May’s work and the approach we discuss
here. May’s algorithm is more obviously akin to a finite-difference quasi-Newton method. Most significantly,
May enforces a sufficient decrease condition; pattern search methods do not. Avoiding a sufficient decrease
condition is useful in certain situations where the objective is prone to numerical error. The absence of
a quantitative decrease condition also allows pattern search methods to be used in situations where only
comparison (ranking) of objective values is possible.

May also assumes that the binding constraints are never linearly dependent—i.e., non-degeneracy. Our
analysis, which is based on the intrinsic geometry of the feasible region rather than its algebraic description,
handles degeneracy (though from a practical perspective, degeneracy can make the calculation of the pattern
expensive). On the other hand, we must place additional algebraic restrictions on the search directions since
pattern search methods require their iterates to lie on a rational lattice. To do so, we require that the
matrix of constraints A in (1.1) be rational. This mild restriction is a price paid for not enforcing a sufficient
decrease condition.

May’s algorithm also has a more elaborate way of sampling f than the general pattern search algorithm
we discuss here. This and the sufficient decrease condition he uses enables May to prove local superlinear
convergence, which is stronger than the purely global results we prove here.

Notation. We denote by R, Q, Z, and N the sets of real, rational, integer, and natural numbers,
respectively. The ith standard basis vector will be denoted by ei. Unless otherwise noted, norms are
assumed to be the Euclidean norm. We will denote the gradient of the objective by g(x).

We will use Ω to denote the feasible region for problem (1.1):

Ω = { x ∈ IRn | ` ≤ Ax ≤ u } .
Given a convex cone K we denote its polar cone by K◦; K◦ is the set of v ∈ IRn such that (v, w) ≤ 0

for all w ∈ K, where (v, w) denotes the Euclidean inner product.
If Y is a matrix, y ∈ Y means that the vector y is a column of Y .

3. Pattern Search Methods. We begin by defining the general pattern search method for the linearly
constrained problem (1.1).
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3.1. The Pattern. The pattern for linearly constrained minimization is defined in a way that is only
slightly less flexible than for patterns in the unconstrained case. In [11], at each iteration the pattern Pk is
specified as the product Pk = BCk of two components, a fixed basis matrix B and a generating matrix Ck

that can vary from iteration to iteration. This description of the pattern was introduced in the unconstrained
case in order to unify the features of such disparate algorithms as the method of Hooke and Jeeves [4] and
multidirectional search (MDS) [10]. In the case of bound constrained problems [5], we introduced restrictions
on the pattern itself rather than on B and Ck independently, but maintained the artifice of the independence
of the choice of the basis and generating matrices.

For linearly constrained problems, we will ignore the basis—i.e., we will take B = I—and work directly
in terms of the pattern Pk. We do this because, as with bound constrained problems, we need to place
restrictions on Pk itself and it is simplest just to ignore B.

A pattern Pk is a matrix Pk ∈ Zn×pk . We will specify pk in §3.5; for now we simply note that pk > n+1.
There is no upper bound on pk. We partition the generating matrix into components

Pk = [ Γk Lk ].(3.1)

We require that Γk ∈ Zn×rk belongs to a finite set of matrices Γ with certain geometrical properties described
in §3.5, and that Lk ∈ Zn×(pk−rk) contains at least one column, a column of zeroes. The inclusion of a column
of zeroes is simply a formalism to allow for a zero step, i.e., xk+1 = xk. Again, we will fully specify rk in
§3.5, but for now we note that n+ 1 ≤ rk < pk.

Given ∆k ∈ IR, ∆k > 0, we define a trial step si
k to be any vector of the form si

k = ∆kc
i
k, where cik

denotes a column of Pk = [c1k · · · c pk

k ]. We call a trial step si
k feasible if (xk + si

k) ∈ Ω. At iteration k, a trial
point is any point of the form xi

k = xk + si
k, where xk is the current iterate.

3.2. The Linearly Constrained Exploratory Moves. Pattern search methods proceed by conduct-
ing a series of exploratory moves about the current iterate xk to choose a new iterate xk+1 = xk + sk, for
some feasible step sk determined during the course of the exploratory moves. The hypotheses on the result
of the linearly constrained exploratory moves, given in Fig. 3.1, allow a broad choice of exploratory moves
while ensuring the properties required to prove convergence. In the analysis of pattern search methods, these
hypotheses assume the role played by sufficient decrease conditions in quasi-Newton methods. Note that the

1. sk ∈ ∆kPk = ∆k [Γk Lk].
2. (xk + sk) ∈ Ω.
3. If min { f(xk + y) | y ∈ ∆kΓk and (xk + y) ∈ Ω } < f(xk),

then f(xk + sk) < f(xk).

Fig. 3.1. Hypotheses on the result of the linearly constrained exploratory moves.

only change from the unconstrained case is the requirement that the iterates must be feasible.

3.3. The Generalized Pattern Search Method. Fig. 3.2 states the general pattern search method
for minimization with linear constraints. To define a particular pattern search method, we must specify the
pattern Pk, the linearly constrained exploratory moves to be used to produce a feasible step sk, and the
algorithms for updating Pk and ∆k.

3.4. The Updates. Fig. 3.3 specifies the rules for updating ∆k. The aim of the update of ∆k is to force
decrease in f(x). An iteration with f(xk + sk) < f(xk) is successful; otherwise, the iteration is unsuccessful.
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Let x0 ∈ Ω and ∆0 > 0 be given.
For k = 0, 1, · · · ,

a) Compute f(xk).
b) Determine a step sk using a linearly constrained exploratory moves algorithm.
c) If f(xk + sk) < f(xk), then xk+1 = xk + sk. Otherwise xk+1 = xk.
d) Update Pk and ∆k.

Fig. 3.2. The general pattern search method for linearly constrained problems.

As is characteristic of pattern search methods, a step need only yield simple decrease, as opposed to sufficient
decrease, in order to be acceptable.

Let τ ∈ Q, τ > 1, and {w0, w1, · · · , wL} ⊂ Z, w0 < 0, and wi ≥ 0, i = 1, · · · , L. Let θ = τw0 , and
λk ∈ Λ = {τw1 , · · · , τwL}.

a) If f(xk + sk) ≥ f(xk), then ∆k+1 = θ∆k.
b) If f(xk + sk) < f(xk), then ∆k+1 = λk∆k.

Fig. 3.3. Updating ∆k.

The conditions on θ and Λ ensure that 0 < θ < 1 and λi ≥ 1 for all λi ∈ Λ. Thus, if an iteration is
successful it may be possible to increase the step length parameter ∆k, but ∆k is not allowed to decrease.
These conditions are identical to those for the unconstrained case.

3.5. Geometrical restrictions on the pattern. In the case of linearly constrained minimization the
pattern Pk must reflect the geometry of the feasible region when the iterates are near the boundary. Pattern
search methods do not approximate the gradient of the objective, but instead rely on a sufficient sampling of
f(x) to ensure that feasible descent will not be overlooked if the pattern is sufficiently small. We now discuss
the geometrical restrictions on the pattern that make this possible in the presence of linear constraints.

3.5.1. The geometry of the nearby boundary. We begin with the relevant features of the boundary
of the feasible region near an iterate. Let aT

i be the ith row of the constraint matrix A in (1.1), and define

A`i =
{
x | aT

i x = `i
}

Aui =
{
x | aT

i x = ui

}
.

These are the boundaries of the half-spaces whose intersection defines Ω. Set

∂Ω`i(ε) = { x ∈ Ω | dist(x,A`i) ≤ ε } ,
∂Ωui(ε) = { x ∈ Ω | dist(x,Aui) ≤ ε } ,

and

∂Ω(ε) =
m⋃

i=1

(∂Ω`i(ε) ∪ ∂Ωui(ε)) .

Given x ∈ Ω and ε ≥ 0 we define the index sets

I`(x, ε) = { i | x ∈ ∂Ω`i(ε) }(3.2)

Iu(x, ε) = { i | x ∈ ∂Ωui(ε) } .(3.3)
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For i ∈ I`(x, ε) we define

ν`i(x, ε) = −ai(3.4)

and for i ∈ Iu(x, ε) we define

νui(x, ε) = ai.(3.5)

These are the outward pointing normals to the corresponding faces of Ω.
Given x ∈ Ω we will define the cone K(x, ε) to be the cone generated by the vectors ν`i(x, ε) for

i ∈ I`(x, ε) and νui(x, ε) for i ∈ Iu(x, ε). Recall that a convex cone K is called finitely generated if there
exists a finite set of vectors {v1, · · · , vr} (the generators of K) such that

K =

{
v | v =

r∑
i=1

λivi, λi ≥ 0, i = 1, · · · , r
}
.

Finally, let PK(x,ε) and PK◦(x,ε) be the projections (in the Euclidean norm) onto K(x, ε) and K◦(x, ε),
respectively. By convention, if K(x, ε) = ∅, then K◦(x, ε) = IRn. Observe that K(x, 0) is the cone of
normals to Ω at x, while K◦(x, 0) is the cone of tangents to Ω at x.

The coneK(x, ε), illustrated in Fig. 3.4, is the cone generated by the normals to the faces of the boundary
within distance ε of x. Its polar K◦(x, ε) is important because if ε > 0 is sufficiently small, we can proceed
from x along all directions in K◦(x, ε) for a distance δ > 0, depending only on ε, and still remain inside the
feasible region. This is not the case for directions in the tangent cone of the feasible region at x, since the
latter cone does not reflect the proximity of the boundary for points close to, but not on, the boundary.

3.5.2. Specifying the pattern. We now state the geometrical restriction on the pattern Pk. We
require the core pattern Γk of Pk to include generators for all of the cones K◦(xk, ε), 0 ≤ ε < ε∗, for some
ε∗ > 0 that is independent of k.

In §3.1 we required Γk to be one of a finite set of integral matrices Γ that is independent of k. Thus Γ
will contain generators for all of the cones K◦(xk, ε), 0 ≤ ε < ε∗. Note that as ε varies from 0 to ε∗ there is
only a finite number of distinct cones K(xk, ε) since there is only a finite number of faces of Ω. This means
that the finite cardinality of Γ is not an issue. There remains the question of constructing sets of generators
that are also integral; we address the issue of constructing suitable patterns in §8. However, we will see that
the construction is computationally tractable, and in many cases is not particularly difficult.

If xk is “far” from the boundary in the sense that K(xk, ε) = ∅, then K◦(xk, ε) = IRn and a set of
generators for K◦(xk, ε) is simply a positive basis for IRn [2, 6]. (A positive basis is a set of generators for
a cone in the case that the cone is a vector space.) Thus, if the iterate is suitably in the interior of Ω, the
algorithm will look like a pattern search algorithm for unconstrained minimization [6], as it ought. On the
other hand, if xk is near the boundary, K(xk, ε) 6= ∅ and the pattern must conform to the geometry of the
boundary, as depicted in Fig. 3.4.

The design of the pattern reflects the fundamental challenge in the development of constrained pattern
search methods. We do not have an estimate of the gradient and consequently we have no idea which con-
straints locally limit feasible improvement in f(x). In a projected gradient method one has the gradient and
can detect the local interaction of the descent direction with the boundary by conducting a line-search along
the projected gradient path. In derivative-free methods such as pattern search we must have a sufficiently
rich set of directions in the pattern since any subset of the nearby faces may be the ones that limit the fea-
sibility of the steepest descent direction, which is itself unavailable for use in the detection of the important
nearby constraints.
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xk
ε
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UK◦(xk, ε)
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*

K(xk, ε)

Fig. 3.4. The situation near the boundary.

4. Convergence analysis. The following hypotheses underlie our analysis:
Hypothesis 1. The constraint matrix A is rational.

The rationality of A is a simple way of ensuring that we can find a rational lattice that fits inside the feasible
region in a suitable way.

Hypothesis 2. The set LΩ(x0) = { x ∈ Ω | f(x) ≤ f(x0) } is compact.
Hypothesis 3. The objective f(x) is continuously differentiable on an open neighborhood D of LΩ(x0).
Let PΩ be the projection onto Ω. For feasible x, let

q(x) = PΩ(x− g(x))− x.

Note that because the projection PΩ is non-expansive, q(x) is continuous on Ω. The following proposition
summarizes properties of q that we will need, particularly the fact that x is a constrained stationary point
for (1.1) if and only if q(x) = 0. The results are classical; see §2 of [3], for instance.

Proposition 4.1. Let x ∈ Ω. Then

‖ q(x) ‖ ≤ ‖ g(x) ‖

and x is a stationary point for problem (1.1) if and only if q(x) = 0.
We can now state the first convergence result for the general pattern search method for linearly con-

strained minimization.
Theorem 4.2. Assume Hypotheses 1–3 hold. Let {xk} be the sequence of iterates produced by the

generalized pattern search method for linearly constrained minimization (Fig. 3.2). Then

lim inf
k→+∞

‖ q(xk) ‖ = 0 .

We can strengthen Theorem 4.2 in the same way that we do in the unconstrained and bound constrained
cases [5, 11], by adding the following hypotheses.

Hypothesis 4. The columns of the generating matrix Ck remain bounded in norm, i.e., there exists
C > 0 such that for all k, C > ‖cik‖, for all i = 1, · · · , pk.

Hypothesis 5. The original hypotheses on the result of the linearly constrained exploratory moves are
replaced with the stronger version given in Fig. 4.1.

Hypothesis 6. We have limk→+∞∆k = 0.
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1. sk ∈ ∆kPk = ∆k [Γk Lk].
2. (xk + sk) ∈ Ω.
3. If min { f(xk + y) | y ∈ ∆kΓk and (xk + y) ∈ Ω } < f(xk),

then f(xk + sk) ≤ min { f(xk + y) | y ∈ ∆kΓk and (xk + y) ∈ Ω }.

Fig. 4.1. Strong hypotheses on the result of the linearly constrained exploratory moves.

Note that we do not require step lengths to be monotone non-increasing.

Then we obtain the following stronger result.

Theorem 4.3. Assume Hypotheses 1–6 hold. Then for the sequence of iterates {xk} produced by the
generalized pattern search method for linearly constrained minimization (Fig. 3.2),

lim
k→+∞

‖q(xk)‖ = 0 .

5. Results from the standard theory. We will need the following results from the analysis of pattern
search methods in the unconstrained case. For the proofs, see [11]; these results generalize to the linearly
constrained case without change. Theorem 5.1 is central to the convergence analysis for pattern search
methods; it allows us to prove convergence for these methods in the absence of any sufficient decrease
condition.

Theorem 5.1. Any iterate xN produced by a generalized pattern search method for linearly constrained
problems (Fig. 3.2) can be expressed in the following form:

xN = x0 +
(
βrLBα−rUB

)
∆0B

N−1∑
k=0

zk,(5.1)

where

• x0 is the initial guess,
• β/α ≡ τ , with α, β ∈ N and relatively prime, and τ is as defined in the rules for updating ∆k

(Fig. 3.3),
• rLB and rUB are integers depending on N ,
• ∆0 is the initial choice for the step length control parameter,
• B is the basis matrix, and
• zk ∈ Zn, k = 0, · · · , N − 1.

Recall that in the case of linearly constrained minimization, B = I.

The quantity ∆k regulates step length as indicated by the following.

Lemma 5.2. (i) There exists a constant ζ∗ > 0, independent of k, such that for any trial step si
k 6= 0

produced by a generalized pattern search method for linearly constrained problems we have
∥∥ si

k

∥∥ ≥ ζ∗∆k.

(ii) If there exists a constant C > 0 such that for all k, C > ‖cik‖, for all i = 1, · · · , pk, then there exists
a constant ψ∗ > 0, independent of k, such that for any trial step si

k produced by a generalized pattern search
method for linearly constrained problems we have ∆k ≥ ψ∗‖si

k‖.

6. Results concerning the geometry of polyhedra. We need a number of results concerning the
geometry of polyhedral and convex cones. We begin with a classical result on the structure of finitely
generated cones.
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Theorem 6.1. Let C be a finitely generated convex cone in IRn. Then C is the union of finitely
many finitely generated convex cones each having a linearly independent set of generators chosen from the
generators of C.

Proof. See Theorem 4.17 in [12].

Corollary 6.2. Let C be a finitely generated convex cone in IRn with generators {v1, · · · , vr}. Then
there exists c6.2 > 0, depending only on {v1, · · · , vr}, such that any z ∈ C can be written in the form
z =

∑r
i=1 λivi with λ ≥ 0 and ‖ λ ‖ ≤ c6.2 ‖ z ‖.

Proof. Theorem 6.1 says that we can write z in the form z =
∑rz

j=1 λijvij where rz ≤ r, λij ≥ 0, and
the matrix Vz = [vi1 · · · virz

] has full column rank. The full column rank of Vz means that the induced linear
transformation is one-to-one, so if V +

z is the pseudoinverse of Vz , then (λi1 , · · · , λirz
)T = V +

z z. If we define
λ via

λi =

{
λij if i = ij,
0 otherwise,

then λ ≥ 0, z = V λ, and ‖ λ ‖ ≤ ‖ V +
z ‖ ‖ z ‖. Since the matrix Vz is drawn from a finite set of possibilities

(e.g., the set of all subsets of {v1, · · · , vr}), we can find the desired constant c6.2, independent of z.

Let C be a closed convex cone in IRn with vertex at the origin and let C◦ be its polar. Given any vector
z, we will denote by zC and zC◦ the projections of z onto the cones C and C◦, respectively. The classical
polar decomposition of z [9, 13] allows us to express z as

z = zC + zC◦ ,

where (zC , zC◦) = 0.

Proposition 6.3. Suppose the cone C is generated by {v1, · · · , vr}. Given γ > 0, there exists c6.3 > 0,
depending only on {v1, · · · , vr} and γ, such that if ‖ zC ‖ ≥ γ ‖ z ‖, z 6= 0, then

max
1≤i≤r

zT vi

‖ z ‖ ‖ vi ‖ ≥ c6.3.

Proof. By Corollary 6.2, we have c6.2 > 0, depending only on {v1, · · · , vr}, such that we can write zC as
zC =

∑r
i=1 λivi, with ‖ λ ‖ ≤ c6.2 ‖ zC ‖ and λ ≥ 0. Then

zT zC =
r∑

i=1

λiz
T vi,

so for some i we must have

λiz
T vi ≥ 1

r
zT zC =

1
r
‖ zC ‖2

.

Since ‖ λ ‖ ≤ c6.2 ‖ zC ‖, we obtain

zTvi ≥ 1
r

1
c6.2

‖ zC ‖ .

If we let

v∗ = max
1≤i≤r

‖ vi ‖

8



and apply the hypothesis ‖ zC ‖ ≥ γ ‖ z ‖, we obtain

zT vi ≥ γ
1
r

1
c6.2

1
v∗
‖ vi ‖ ‖ z ‖

and the desired result.
Corollary 6.4. Given γ > 0, there exists c6.4 > 0, depending only on A and γ, for which the following

hold. For any x ∈ Ω, ε ≥ 0,
1. If

∥∥ zK(x,ε)

∥∥ ≥ γ ‖ z ‖, z 6= 0, then

max
1≤i≤r

zT vi

‖ z ‖ ‖ vi ‖ ≥ c6.4.

where {v1, · · · , vr} are the generators of K(x, ε) defined in (3.4)–(3.5).
2. If

∥∥ zK◦(x,ε)

∥∥ ≥ γ ‖ z ‖, z 6= 0, then

max
1≤i≤r

zT vi

‖ z ‖ ‖ vi ‖ ≥ c6.4.

where {v1, · · · , vr} are the generators of K◦(x, ε) required in §3.5.2 to be in the set Γ.
Proof. The corollary follows from the observation that since K(x, ε) is generated by subsets of the rows

of A, K(x, ε) can be one of only a finite number of possible cones. Consequently K◦(x, ε) will also be one
of only a finite number of possible cones. Applying Proposition 6.3 to each of these cones in turn (with the
generators (3.4)–(3.5) for K(x, ε) and the generators in Γ for K◦(x, ε)) and taking the minimum yields the
corollary.

Let

a∗ = max
1≤i≤m

{‖ ai ‖}
a∗ = min

1≤i≤m
{‖ ai ‖}.

We may assume, without loss of generality, that a∗ > 0. The next proposition says that if x ∈ Ω is close to
the boundary of Ω and a sufficiently long step in the direction w remains feasible, then w cannot be “too
normal” to ∂Ω near x.

Proposition 6.5. Given η > 0, there exist R > 0 and c6.5 > 0, depending only on A, such that if
0 ≤ ε ≤ R, x ∈ ∂Ω(ε), ‖ w ‖ ≥ η, and (x+ w) ∈ Ω, then

∥∥ PK◦(x,ε)w
∥∥ ≥ c6.5 ‖ w ‖.

Proof. A simple calculation shows that the distance from any point x to the affine subspace defined by
aT

i z = b is
∣∣ b− aT

i x
∣∣ / ‖ ai ‖. Thus, if the distance from x to aT

i z = b is no more than ε, then

b− ε ‖ ai ‖ ≤ aT
i x ≤ b+ ε ‖ ai ‖ .(6.1)

Also note that the distance from the affine subspace aT
i x = `i to aT

i x = ui is

ui − `i
‖ ai ‖ .

Now let c6.4 > 0 be the constant from Corollary 6.4. Set

R =
c6.4a∗
a∗

η

2

and consider any ε such that 0 ≤ ε ≤ R.
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By our convention, if K(x, ε) = ∅, then K◦(x, ε) = IRn and the proposition holds with c6.5 = 1 since
the projection onto K◦(x, ε) is the identity. Thus we need only consider the case where K(x, ε) 6= ∅. From
(6.1), if x ∈ ∂Ω(ε) then for i ∈ I`(x, ε) ∪ Iu(x, ε) we have either

`i ≤ aT
i x ≤ `i + ε ‖ ai ‖

or

ui − ε ‖ ai ‖ ≤ aT
i x ≤ ui.

This gives us two cases to consider:
1. Suppose `i ≤ aT

i x ≤ `i + ε ‖ ai ‖. Since (x+ w) ∈ Ω, we have

`i ≤ aT
i x+ aT

i wK + aT
i wK◦ ,

where w = wK + wK◦ is the polar decomposition of w, whence

0 ≤ aT
i x− `i + aT

i wK + aT
i wK◦ ≤ ε ‖ ai ‖+ aT

i wK + a∗ ‖ wK◦ ‖ .

Since in this case ν`i(x, ε) = −ai (see (3.4)), we have

νT
`i
wK ≤ ε ‖ ai ‖+ a∗ ‖ wK◦ ‖ ≤ a∗(ε+ ‖ wK◦ ‖).(6.2)

2. If, on the other hand, ui − ε ‖ ai ‖ ≤ aT
i x ≤ ui, then, since (x + w) ∈ Ω,

aT
i x+ aT

i wK + aT
i wK◦ ≤ ui

yields

0 ≤ ui − aT
i x− aT

i wK − aT
i wK◦ ≤ ε ‖ ai ‖ − aT

i wK + a∗ ‖ wK◦ ‖ .

In this case νui(x, ε) = ai (see (3.5)), so

νT
ui
wK ≤ ε ‖ ai ‖+ a∗ ‖ wK◦ ‖ ≤ a∗(ε+ ‖ wK◦ ‖).(6.3)

Now consider the generators ν`i , νui for K(x, ε). If we apply Corollary 6.4 to K(x, ε) and z = wK (with
γ = 1), then for one of the generators, which we will simply call ν, we have νTwK ≥ c6.4 ‖ wK ‖ ‖ ν ‖. From
(6.2) and (6.3) we obtain

c6.4 ‖ ν ‖ ‖ wK ‖ ≤ νTwK ≤ a∗(ε+ ‖ wK◦ ‖)

or

‖ wK ‖ ≤ a∗

c6.4a∗
(ε+ ‖ wK◦ ‖) .

Since ‖ w ‖ ≤ ‖ wK ‖+ ‖ wK◦ ‖, we have

‖ w ‖ ≤ a∗

c6.4a∗
(ε+ ‖ wK◦ ‖) + ‖ wK◦ ‖

By our choice of ε and the hypothesis ‖ w ‖ ≥ η, we obtain

‖ w ‖ ≤ η

2
+

(
1 +

a∗

c6.4a∗

)
‖ wK◦ ‖

≤ ‖ w ‖
2

+
(

1 +
a∗

c6.4a∗

)
‖ wK◦ ‖ ,

10



and finally

‖ w ‖ ≤ 2
(

1 +
a∗

c6.4a∗

)
‖ wK◦ ‖ ,

giving us the desired bound.
The next proposition relates the global geometry of Ω and the local geometry of Ω near a feasible point

x. It is an elaboration of the observation that a convex set lies on one side of a hyperplane tangent to its
boundary. The result is also true without the restriction of x to a compact subset of Ω, but this assumption
shortens the proof.

Proposition 6.6. Given γ > 0, η > 0, and a compact set S ⊆ Ω, there exist R > 0 and c6.6 > 0 such
that for all x ∈ S and all ε, 0 ≤ ε ≤ R, if ‖ w ‖ ≤ γ and ‖ PΩ(x+ w) − x ‖ ≥ η, then

∥∥ PK◦(x,ε)w
∥∥ ≥ c6.6

∥∥ PK◦(x,ε) (PΩ(x+ w)− x)
∥∥ .

Proof. Suppose the proposition is not true. Then, for all j, trying c6.6 = R = 1/j, we can find xj ∈ S,
εj for which 0 ≤ εj ≤ 1/j, and wj for which ‖ wj ‖ ≤ γ and ‖ PΩ(xj + wj)− xj ‖ ≥ η, such that

∥∥ PK◦(xj ,εj)wj

∥∥ < 1
j

∥∥ PK◦(xj,εj) (PΩ(xj + wj)− xj)
∥∥ .

For convenience, let zj = PΩ(xj + wj)− xj ; then ‖ zj ‖ ≤ ‖ wj ‖ (see Proposition 4.1).
Applying the compactness of S and the boundedness of the sequences {wj}, {zj}, we may find a sub-

sequence for which xjk
→ x∗ ∈ S, wjk

→ w∗, and zjk
→ z∗, where ‖ w∗ ‖ ≤ γ, ‖ z∗ ‖ ≥ η, and ‖ z∗ ‖ ≤ γ.

Note z∗ = PΩ(x∗ + w∗)− x∗ by the continuity of the projection PΩ.
Furthermore, since there are only a finite number of possible cones K(xjk

, εjk
), there exists a cone K∗

such that K∗ = K(xjk
, εjk

) infinitely often. By selecting this further subsequence, we may assume that
K∗ = K(xjk

, εjk
) for all k.

Next we will show that K∗ ⊆ K(x∗, 0). By construction, K∗ is generated by a subset of {±ai}, i ∈
{1, · · · ,m}. If −ai ∈ K∗ = K(xjk

, εjk
), then

dist(xjk
, A`i) ≤ εjk

≤ 1/jk

for all k, so

dist(x∗, A`i) =

∣∣ `i − aT
i x∗

∣∣
‖ ai ‖

≤
∣∣ `i − aT

i xjk

∣∣
‖ ai ‖ +

∣∣ aT
i xjk

− aT
i x∗

∣∣
‖ ai ‖

= dist(xjk
, A`i) +

∣∣ aT
i xjk

− aT
i x∗

∣∣
‖ ai ‖ .

Taking the limit as k →∞ we see that dist(x∗, A`i) = 0, so −ai ∈ K(x∗, 0). A similar argument, substituting
ui for `i, shows that if ai ∈ K∗, then ai ∈ K(x∗, 0). Since K(x∗, 0) contains the generators of K∗, it follows
that K∗ ⊆ K(x∗, 0), as desired.

Consequently, K◦
∗ ⊇ K◦(x∗, 0) and, since K◦

∗ = K◦(xjk
, εjk

), we have

∥∥ PK◦(x∗,0)w∗
∥∥ ≤ ∥∥ PK◦∗w∗

∥∥ =
∥∥∥ PK◦(xjk

,εjk
)w∗

∥∥∥
11



≤
∥∥∥ PK◦(xjk

,εjk
)(w∗ − wjk

)
∥∥∥ +

∥∥∥ PK◦(xjk
,εjk

)wjk

∥∥∥
≤ ‖ w∗ − wjk

‖+
∥∥∥ PK◦(xjk

,εjk
)zjk

∥∥∥ /jk
≤ ‖ w∗ − wjk

‖+ ‖ zjk
‖ /jk

≤ ‖ w∗ − wjk
‖+ γ/jk,

from which we conclude that

∥∥ PK◦(x∗,0)w∗
∥∥ = 0.

This means that w∗ is normal to Ω at x∗. However, it would follow that z∗ = 0, a contradiction.
As we noted at the introduction of K◦(x, ε), we can proceed from x along all directions in K◦(x, ε) for

a distance δ > 0, depending only on ε, and still remain inside the feasible region. The following proposition
is the formal statement of this observation. Define

h = min
1≤i≤m

`i 6=ui

ui − `i
‖ ai ‖ .(6.4)

This is the minimum distance between the faces of Ω associated with the constraints that are not equality
constraints.

Proposition 6.7. Given ε > 0, ε < h/2, there exists δ6.7 > 0 such that for any x ∈ Ω, if w ∈ K◦(x, ε)
and ‖ w ‖ ≤ δ6.7, then (x + w) ∈ Ω.

Proof. Let

δ = δ6.7 =
ε

2

and consider any index i ∈ {1, · · · ,m}. We will show that x+w is feasible with respect to the ith constraint.
If x /∈ ∂Ω`i(ε) ∪ ∂Ωui(ε), then `i + ε ‖ ai ‖ < aT

i x < ui − ε ‖ ai ‖, so

aT
i x+ aT

i w ≥ `i + ε ‖ ai ‖ − ‖ ai ‖ ‖ w ‖ ≥ `i + (ε− δ) ‖ ai ‖ ≥ `i

and

aT
i x+ aT

i w ≤ ui − ε ‖ ai ‖+ ‖ ai ‖ ‖ w ‖ ≤ ui − (ε− δ) ‖ ai ‖ ≤ ui.

On the other hand, suppose x ∈ ∂Ω`i(ε) ∪ ∂Ωui(ε). There are three cases to consider. First suppose
x ∈ Ω`i(ε) and x ∈ ∂Ωui(ε). Since ε < h/2, this means that `i = ui (i.e., the constraint is an equality
constraint). Then, if w ∈ K◦(x, ε), we have both (w , −ai) ≤ 0 and (w , ai) ≤ 0, so (w , ai) = 0. Thus

`i = aT
i x+ aT

i w = ui.

Next suppose x ∈ ∂Ω`i(ε) but x /∈ ∂Ωui(ε). If w ∈ K◦(x, ε), we have (−ai, w) ≤ 0. Applying (6.1) we obtain

`i ≤ aT
i x+ aT

i w ≤ `i + ε ‖ ai ‖+ ‖ ai ‖ ‖ w ‖ ≤ `i + ‖ ai ‖ (ε+ δ) ≤ ui.

Finally, if x ∈ ∂Ωui(ε) but x /∈ ∂Ω`i(ε), then, if w ∈ K◦(x, ε), (ai, w) ≤ 0, so

ui ≥ aT
i x+ aT

i w ≥ ui − ε ‖ ai ‖ − ‖ ai ‖ ‖ w ‖ ≥ ui − ‖ ai ‖ (ε+ δ) ≥ `i.

Thus (x + w) satisfies the constraints for all i ∈ {1, · · · ,m}, so (x+ w) ∈ Ω.
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7. Proof of Theorems 4.2 and 4.3. Given an iterate xk, let gk = g(xk) and qk = PΩ(xk − gk)− xk.
Let B(x, δ) be the ball with center x and radius δ, and let ω denote the following modulus of continuity of
g: given x ∈ LΩ(x0) and ε > 0,

ω(x, ε) = sup { δ > 0 | B(x, δ) ⊂ D and ‖ g(y)− g(x) ‖ < ε for all y ∈ B(x, δ) } .
Then we have this elementary proposition concerning descent directions, whose proof we omit (see [5]).

Proposition 7.1. Let s ∈ IRn and x ∈ LΩ(x0). Assume that g(x) 6= 0 and g(x)T s ≤ −ε ‖ s ‖. Then,
if ‖ s ‖ < ω(x, ε

2 ),

f(x+ s)− f(x) ≤ −ε
2
‖ s ‖ .

The next result is the crux of the convergence analysis. All the results of §6 are brought to bear to show
that if we are not at a constrained stationary point, then the pattern always contains a descent direction
along which we remain feasible for a sufficiently long distance.

Let Γ∗ be the maximum norm of any column of the matrices in the set Γ, where Γ is as in §3.1 and §3.5.
If ∆ < δ/Γ∗, then

∥∥ si
k

∥∥ < δ for all si
k ∈ Γk.

Proposition 7.2. Let η > 0. Then there exists c7.2 > 0 and δ7.2 > 0 such that if ‖ qk ‖ ≥ η and
∆k < δ7.2 then there is a trial step si

k defined by a column of ∆kΓk for which (xk + si
k) ∈ Ω and

−gT
k s

i
k ≥ c7.2 ‖ qk ‖

∥∥ si
k

∥∥ .
Proof. By hypothesis, ‖ gk ‖ is bounded on LΩ(x0); let g∗ be an upper bound for ‖ gk ‖. Consider ε > 0

sufficiently small that
1. ε < min(ε∗, h/2), where ε∗ was introduced in §3.5.2 and h is given by (6.4), and
2. both Proposition 6.5 and Proposition 6.6 hold,

where we invoke Proposition 6.6 with γ = g∗ since we intend to apply it to w = −gk.
If xk ∈ ∂Ω(ε), then, since (xk + qk) ∈ Ω and ‖ qk ‖ ≥ η, by Proposition 6.5 we have∥∥ PK◦(xk,ε)qk

∥∥ ≥ c6.5 ‖ qk ‖ .(7.1)

This bound also holds if x /∈ ∂Ω(ε), since then K(x, ε) = ∅ and K◦(x, ε) = IRn, and necessarily c6.5 ≤ 1.
Meanwhile, Proposition 6.6 says that∥∥ PK◦(xk,ε)(−gk)

∥∥ ≥ c6.6

∥∥ PK◦(xk,ε)qk
∥∥ ,

so from (7.1) we obtain ∥∥ PK◦(xk,ε)(−gk)
∥∥ ≥ c6.5c6.6 ‖ qk ‖(7.2)

≥ c6.5c6.6η ‖ gk ‖ /g∗.(7.3)

We require the core pattern Γk of Pk to include generators for all of the cones K◦(xk, ε), ε < ε∗.
Therefore some subset of the core pattern steps si

k forms a set of generators for K◦(xk, ε). The lower bound
(7.3) allows us to apply Corollary 6.4 with z = −gk and K◦(xk, ε). If we do so and apply (7.2), we see that
for some si

k ∈ ∆kΓk, (−gk , s
i
k

) ≥ c6.4 ‖ −gk ‖
∥∥ si

k

∥∥
≥ c6.4

∥∥ PK◦(xk,ε)(−gk)
∥∥ ∥∥ si

k

∥∥
≥ c6.4c6.5c6.6 ‖ qk ‖

∥∥ si
k

∥∥

13



Thus we are assured of a descent direction inside the pattern.
Now we must show that we can take a sufficiently long step in the direction of this descent direction and

remain feasible. Proposition 6.7 allows us to do this; given ε > 0 we can find δ such that once ∆ < δ/Γ∗,
then, since si

k ∈ K◦(xk, ε) and
∥∥ si

k

∥∥ < δ, we have (xk + si
k) ∈ Ω.

We now show that if we are not at a constrained stationary point, we can always find a step in the
pattern is both feasible and yields improvement in the objective.

Proposition 7.3. Given any η > 0, there exists δ > 0, independent of k, such that if ∆k < δ and
‖ qk ‖ > η, the pattern search method for linearly constrained minimization will find an acceptable step sk;
i.e., f(xk + sk) < f(xk) and (xk + sk) ∈ Ω.

If, in addition, the columns of the generating matrix remain bounded in norm and we enforce the strong
hypotheses on the results of the linearly constrained exploratory moves (Hypotheses 4 and 5), then, given any
η > 0, there exist δ7.3 > 0 and σ > 0, independent of k, such that if ∆k < δ7.3 and ‖ qk ‖ > η, then

f(xk+1) ≤ f(xk)− σ ‖ qk ‖ ‖ sk ‖ .

Proof. Since g(x) is uniformly continuous on LΩ(x0) and LΩ(x0) is a compact subset of the open set D
on which f(x) is continuously differentiable, there exists ω∗ > 0 such that

ω
(
xk,

c7.2

2
η
)
≥ ω∗

for all k for which ‖ qk ‖ > η. Also define

δ = δ7.3 = min (δ7.2, ω∗/Γ∗) .

Now suppose ‖ qk ‖ > η and ∆k < δ. Since ∆k < δ7.2, Proposition 7.2 assures us of the existence of a
step si

k defined by a column of ∆kΓk such that (xk + si
k) ∈ Ω and

gT
k s

i
k ≤ −c7.2 ‖ qk ‖

∥∥ si
k

∥∥ .
At the same time, we also have

∥∥ si
k

∥∥ ≤ ∆kΓ∗ ≤ ω∗ ≤ ω
(
xk,

c7.2

2
‖ qk ‖

)
.

Hence, by Proposition 7.1,

f(xk + si
k)− f(xk) ≤ −c7.2

2
‖ qk ‖

∥∥ si
k

∥∥ .
Thus, when ∆k < δ, f(xk + si

k) < f(xk) for at least one feasible si
k ∈ ∆kΓk. The hypotheses on linearly

constrained exploratory moves guarantee that if

min { f(xk + y) | y ∈ ∆kΓk, (xk + y) ∈ Ω } < f(xk),

then f(xk + sk) < f(xk) and (xk + sk) ∈ Ω. This proves the first part of the proposition.
If, in addition, we enforce the strong hypotheses on the result of the linearly constrained exploratory

moves, then we actually have

f(xk+1)− f(xk) ≤ −c7.2

2
‖ qk ‖

∥∥ si
k

∥∥ .
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Part (i) of Lemma 5.2 then ensures that

f(xk+1) ≤ f(xk)− c7.2

2
ζ∗∆k ‖ qk ‖ .

Applying part (ii) of Lemma 5.2, we arrive at

f(xk+1) ≤ f(xk)− c7.2

2
ζ∗ψ∗ ‖ qk ‖ ‖ sk ‖ .

This yields the second part of the proposition with σ = (c7.2/2)ζ∗ψ∗.

Corollary 7.4. If lim infk→+∞ ‖ qk ‖ 6= 0, then there exists a constant ∆∗ > 0 such that for all k,
∆k > ∆∗.

Proof. By hypothesis, there exists N and η > 0 such that for all k > N , ‖ qk ‖ > η. By Proposition 7.3,
we can find δ such that if k > N and ∆k < δ, then we will find an acceptable step. In view of the update of ∆k

given in Fig. 3.3, we are assured that for all k > N , ∆k > θδ. We may then take ∆∗ = min{∆0, · · · ,∆N , θδ}.

The next theorem combines the strict algebraic structure of the iterates with the simple decrease condi-
tion of the generalized pattern search algorithm for linearly constrained problems, along with the rules for
updating ∆k, to tell us the limiting behavior of ∆k.

Theorem 7.5. Under Hypotheses 1–3, lim infk→+∞∆k = 0.

Proof. The proof is like that of Theorem 3.3 in [11]. Suppose 0 < ∆LB ≤ ∆k for all k. Using the rules
for updating ∆k, found in Fig. 3.3, it is possible to write ∆k as ∆k = τrk∆0, where rk ∈ Z.

The hypothesis that ∆LB ≤ ∆k for all k means that the sequence {τrk} is bounded away from zero.
Meanwhile, we also know that the sequence {∆k} is bounded above because all the iterates xk must lie
inside the set LΩ(x0) = { x ∈ Ω | f(x) ≤ f(x0) } and the latter set is compact; part (i) Lemma 5.2 then
guarantees an upper bound ∆UB for {∆k}. This, in turn, means that the sequence {τrk} is bounded above.
Consequently, the sequence {τrk} is a finite set. Equivalently, the sequence {rk} is bounded above and
below.

Next we recall the exact identity of the quantities rLB and rUB in Theorem 5.1; the details are found in
the proof of Theorem 3.3 in [11]. In the context of Theorem 5.1,

rLB = min
0≤k<N

{rk} rUB = max
0≤k<N

{rk}.

If, in the matter at hand, we let

rLB = min
0≤k<+∞

{rk} rUB = max
0≤k<+∞

{rk},(7.4)

then (5.1) holds for the bounds given in (7.4), and we see that for all k, xk lies in the translated integer
lattice G generated by x0 and the columns of βrLBα−rUB∆0I.

The intersection of the compact set LΩ(x0) with the lattice G is finite. Thus, there must exist at least
one point x∗ in the lattice for which xk = x∗ for infinitely many k.

We now appeal to the simple decrease condition in part (c) of Fig. 3.2, which guarantees that an iterate
cannot be revisited infinitely many times since we accept a new step sk if and only if f(xk) > f(xk +sk) and
(xk + sk) ∈ Ω. Thus there exists an N such that for all k ≥ N , xk = x∗, which implies f(xk) = f(xk + sk).

We now appeal to the algorithm for updating ∆k (part (a) in Fig. 3.3) to see that ∆k → 0, thus leading
to a contradiction.
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7.1. The Proof of Theorem 4.2. The proof is like that of Theorem 3.5 in [11]. Suppose that
lim infk→+∞ ‖ qk ‖ 6= 0. Then Corollary 7.4 tells us that there exists ∆∗ > 0 such that for all k, ∆k > ∆∗.
But this contradicts Theorem 7.5.

7.2. The Proof of Theorem 4.3. The proof, also by contradiction, follows that of Theorem 3.7 in
[11]. Suppose lim supk→+∞ ‖ qk ‖ 6= 0. Let ε > 0 be such that there exists a subsequence ‖ q(xmi) ‖ ≥ ε.
Since

lim inf
k→+∞

‖ qk ‖ = 0,

given any 0 < η < ε, there exists an associated subsequence li such that

‖ qk ‖ > η for mi ≤ k < li, ‖ q(xli) ‖ < η.

Since ∆k → 0, we can appeal to Proposition 7.3 to obtain for mi ≤ k < li, i sufficiently large,

f(xk)− f(xk+1) ≥ σ ‖ qk ‖ ‖ sk ‖ ≥ ση ‖ sk ‖ ,

where σ > 0. Summation then yields

f(xmi)− f(xli) ≥ ∑li
k=mi

ση ‖ sk ‖ ≥ c′ ‖ xmi − xli ‖ .

Since f is bounded below, f(xmi)− f(xli) → 0 as i→ +∞, so ‖ xmi − xli ‖ → 0 as i→ +∞. Then, because
q is uniformly continuous, ‖ q(xmi)− q(xli) ‖ < η, for i sufficiently large. However,

‖ q(xmi ) ‖ ≤ ‖ q(xmi)− q(xli) ‖+ ‖ q(xli) ‖ ≤ 2η.(7.5)

Since (7.5) must hold for any η, 0 < η < ε, we have a contradiction (e.g., try η = ε
3 ).

8. Constructing patterns for problems with linear constraints. In this section we outline prac-
tical implementations of pattern search methods for linearly constrained minimization. The details will be
the subject of future work. In the process we also show that under the assumption that A is rational, one can
actually construct patterns with both the algebraic properties required in §3.1 and the geometric properties
required in §3.5.

8.1. Remarks on the general case. We begin by showing that in general it is possible to find rational
generators for the cones K◦(x, ε). By clearing denominators we then obtain the integral vectors for Γ as
required in §3.1. The construction is an elaboration of the proof that polyhedral cones are finitely generated
(see [12], for instance). The proof outlines an algorithm for the construction of generators of cones. Given
a cone K we will use V to denote a matrix whose columns are generators of K:

K = { x | x = V λ, λ ≥ 0 } .

Proposition 8.1. Suppose K is a cone with rational generators V . Then there exists a set of rational
generators for K◦.

Proof. Suppose w ∈ K◦; then (w, v) ≤ 0 for all v ∈ K. Let v = V λ, λ ≥ 0. Then

(w , v) =
(
PN (V T )w + PN (V T )⊥w , V λ

) ≤ 0,

where PN (V T ) and P(N (V T ))⊥ are the projections onto the nullspace N (V T ) of V T and its orthogonal
complement N (V T )⊥, respectively. Since N (V T )⊥ is the same as the range R(V ) of V , we have

(w , v) =
(
PR(V )w , V λ

) ≤ 0.
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Let N and R be rational bases for N (V T ) and R(V ) respectively; these can be constructed, for instance,
via reduction to row echelon form since V is rational.

Let {p1, · · · , pt} be a rational positive basis for N (V T ). Such a positive basis can be constructed as
follows. If N is n× r then if Π is a rational positive basis (with t elements) for IRr (e.g., Π = [I − I]), then
NΠ is a rational positive basis for N (V T ).

Meanwhile, if R is a rational basis for R(V ), then for some z we have

PR(V )w = Rz,

whence

(w , v) = (Rz , V λ) ≤ 0.

Since λTV TRz ≤ 0 for all λ ≥ 0, it follows that V TRz ≤ 0. Let e = (1, · · · , 1)T and consider

C =
{
z | V TRz ≤ 0, eTV TRz ≥ −1

}
.

Since C is convex and compact, it is the convex hull of its extreme points {c1, · · · , cs}. Furthermore, note that
the extreme points of C will define a set of generators for the cone

{
z | V TRz ≤ 0

}
. The extreme points

of C are also rational since V TR is rational; the extreme points will be solutions to systems of equations with
rational coefficients. These extreme points, which are the vertices of the polyhedron C, can be computed by
any number of vertex enumeration techniques (e.g., see [1] and the references cited therein).

Returning to w ∈ K◦, we see that we can express w as a positive linear combination of the vectors
{p1, · · · , pt, c1, · · · , cs}. Moreover, by construction the latter vectors are rational.

8.2. The nondegenerate case. As we have seen, the construction of sets of generators for cones
is non-trivial and is related to the enumeration of vertices of polyhedra. However, in the case of non-
degeneracy—the absence of any point on the boundary at which the set of binding constraints is linearly
dependent—we can compute the required generators in a straightforward way. This case is handled in [7] by
using the QR factorization to derive the search directions. Because we require rational search directions, we
use the LU factorization (reduction to row echelon form, to be more precise) since the latter can be done in
rational arithmetic.

The following proposition shows that once we have identified a cone K(xk, δ) with a linearly independent
set of generators, we can construct generators for all the cones K(xk, ε), 0 ≤ ε ≤ δ.

Proposition 8.2. Suppose that for some δ, K(x, δ) has a linearly independent set of rational generators
V . Let N be a rational positive basis for the nullspace of V T .

Then for any ε, 0 ≤ ε ≤ δ, a set of rational generators for K◦(x, ε) can be found among the columns of
N , V (V TV )−1, and −V (V TV )−1.

Proof. Suppose w ∈ K◦; then (w, v) ≤ 0 for all v ∈ K. Let v = V λ, λ ≥ 0. Since V has full column
rank, we have

(w, v) = ((I − V (V TV )−1V T )w + V (V TV )−1V Tw, V λ) ≤ 0

or (V Tw, λ) ≤ 0 for all λ ≥ 0. Let ξ = V Tw; then we have (ξ, λ) ≤ 0 for all λ ≥ 0, so ξ ≤ 0.
The matrix N is a positive basis for the range of I − V (V TV )−1V T , since the latter subspace is the

same as the nullspace of V T . Then any w ∈ K◦ can be written in the form

w = Nζ − V (V TV )−1ξ
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where ζ ≥ 0 and ξ ≥ 0. Thus the columns of N and −V (V TV )−1 are a set of generators for K◦.
Moreover, for ε < δ we obtain K̃ = K(x, ε) by dropping generators from V . Without loss of generality

we will assume that we drop the first r columns of V , where V has p columns. Then consider w ∈ K̃◦.
Proceeding as before, we obtain (V Tw, λ) ≤ 0 for all λ ≥ 0, λ1, · · · , λr = 0. If we once again define
ξ = V Tw, then we see that ξr+1, · · · , ξp ≤ 0, while ξ1, · · · , ξr are unrestricted in sign. Hence we obtain a set
of generators for K̃◦ from the columns of N , the first r columns of V (V TV )−1 and their negatives, and the
last p− r columns of −V (V TV )−1.

Proposition 8.2 leads to the following construction of patterns for linearly constrained minimization.
Under the assumption of non-degeneracy, we know there exists ε∗ such that if 0 ≤ ε ≤ ε∗, then K(x, ε)
has a linearly independent set of generators. If we knew this ε∗, it would be a convenient choice for the ε∗

required in §3.5. The following algorithm implicitly estimates ε∗: it conducts what amounts to a safe-guarded
backtracking on ε at each iteration to find a value of εk for which K(xk, εk) has a linearly independent set
of generators.

Given ε∗ independent of k, choose εk ≥ ε∗. Then
1. Define the cone K(xk, εk) as in §3.5.
2. Let V represent the matrix whose columns are the generators ν`

i (xk, εk) and νu
i (xk, εk) of K(xk, εk)

(defined in (3.4)–(3.5)). Determine whether or not V has full column rank. If so, go to Step 3.
Otherwise, reduce εk just until |I`(xk, εk)|+ |Iu(xk, εk)| is decreased. Return to Step 1.

3. Construct a rational positive basis N for the range of I−V (V TV )−1V T . This can be done via reduc-
tion to row echelon form, or simply by taking the columns of the matrices ± (

I − V (V TV )−1V T
)
.

4. Form the matrix Γk = [N V (V TV )−1 − V (V TV )−1 ].
Under the assumption of non-degeneracy, εk will remain bounded away from 0 as a function of k, implicitly
giving us the ε∗ introduced in §3.5.2.

8.3. The case of bound constraints. Matters simplify enormously in the case of bound constraints,
previously considered in [5]. We will briefly discuss the specialization to bound constrained minimization
and in the process sharpen the results in [5].

In the case of bound constraints we have

minimize f(x)
subject to l ≤ x ≤ u.

(8.1)

Again, we allow the possibility that some of the variables are unbounded either above or below by permitting
`j , uj = ±∞, j ∈ {1, · · · , n}.

In the case of bound constraints we know a priori the possible generators of the cones K(x, ε) and
K◦(x, ε). For any x ∈ Ω and any ε > 0 the cone K(x, ε) is generated by some subset of the coordinate
vectors ±ei. If K(x, ε) is generated by νi1 , · · · , νir , where νij ∈ {eij ,−eij}, then K◦(x, ε) is generated by
the set −νi1 , · · · ,−νir together with a positive basis for the orthogonal complement of the space spanned by
νi1 , · · · , νir . This orthogonal complement simply corresponds to the remaining coordinate directions.

This simplicity allows us to prescribe in advance patterns that work for all K(x, ε). In [5] we gave
the prescription Γk = [I − I]. This choice, independent of k, includes generators for all possible K◦(x, ε).
However, if not all the variables are bounded, then one can make a choice of Γk that is independent of k
but more parsimonious in the number of directions. Let xi1 , · · · , xir be the variables with either a lower or
upper bound; then Γk should include the coordinate vectors ±ei1 , · · · ,±eir together with a positive basis for
the orthogonal complement of the linear span of ei1 , · · · , eir ; a positive basis for the orthogonal complement
can have as few as (n− r) + 1 elements.
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The choice of Γk = [I − I] in [5] requires, in the worst case, 2n objective evaluations per iteration. The
more detailed analysis given here leads to a reduction in this cost if not all the variables are bounded. If only
r < n variables are bounded, then we can find an acceptable pattern containing as few as 2r+((n−r)+1) =
n+ r + 1 points.

Finally, note that if general linear constraints are present but A has full row rank (i.e., there are no more
than n constraints and they are all linearly independent), then one can carry out a construction similar to
that for bound constraints.

9. Conclusions. We have introduced pattern search algorithms for solving problems with general lin-
ear constraints. We have shown that under mild assumptions we can guarantee global convergence of pattern
search methods for linearly constrained problems to a Karush-Kuhn-Tucker point. As in the case of uncon-
strained minimization, pattern search methods for linearly constrained problems accomplish this without
explicit recourse to the gradient or the directional derivative. In addition, we have outlined particular in-
stances of such algorithms and shown how the general approach can be greatly simplified when the only
constraints are bounds on the variables. The effectiveness of these techniques will be the subject of future
work.
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